走进修仙

吾道长不孤

首页 >> 走进修仙 >> 走进修仙全文阅读(目录)
大家在看
走进修仙 吾道长不孤 - 走进修仙全文阅读 - 走进修仙txt下载 - 走进修仙最新章节 - 好看的武侠仙侠小说

第2章 科普向 关于希尔伯特空间

上一章 书 页 下一章 阅读记录

这里是道长的科普频道!

正文里,我们的主角王崎第二次使用的金手指,是来自地球的大数学家大卫·希尔伯特的希尔伯特空间。

由于不想再正文水字数,所以贫道将这个数学方法的科普贴在这里!有兴趣的书友不妨进来一看哦~

阿尔伯特空间并不是确实存在的,而是抽象的、用于演算的工具,即相空间。

每个读过中学数学的朋友应该都建立过二维的笛卡儿平面:画一条x轴和一条与其垂直的y轴,并加上箭头和刻度【也就是通常所说的平面直角坐标系】。在这样一个平面系统里,每一个点都可以用一个包含两个变量的坐标(x,y)来表示,例如(1,2),或者(4.3,5.4),这两个数字分别表示该点在x轴和y轴上的投影。当然,并不一定要使用直角坐标系统,也可以用极坐标或者其他坐标系统来描述一个点,但不管怎样,对于2维平面来说,用两个数字就可以唯一地指明一个点了。如果要描述三维空间中的一个点,那么我们的坐标里就要有3个数字,比如(1,2,3),这3个数字分别代表该点在3个互相垂直的维度方向的投影。

让我们扩展一下思维:假如有一个四维空间中的点,我们又应该如何去描述它呢?显然我们要使用含有4个变量的坐标,比如(1,2,3,4),如果我们用的是直角坐标系统,那么这4个数字便代表该点在4个互相垂直的维度方向的投影,推广到n维,情况也是一样。诸位大可不必费神在脑海中努力构想4维或者11维空间是如何在4个乃至11个方向上都互相垂直的,事实上这只是我们在数学上构造的一个假想系统而已。

我们所关心的是:n维空间中的一个点可以用n个变量来唯一描述,而反过来,n个变量也可以用一个n维空间中的点来涵盖。

现在让我们回到物理世界,我们如何去描述一个普通的粒子呢?在每一个时刻t,它应该具有一个确定的位置坐标(q1,q2,q3),还具有一个确定的动量p。动量也就是速度乘以质量,是一个矢量,在每个维度方向都有分量,所以要描述动量p还得用3个数字:p1,p2和p3,分别表示它在3个方向上的速度。总而言之,要完全描述一个物理质点在t时刻的状态,我们一共要用到6个变量。而我们在前面已经看到了,这6个变量可以用6维空间中的一个点来概括,所以用6维空间中的一个点,我们可以描述1个普通物理粒子的经典行为。我们这个存心构造出来的高维空间就是系统的相空间。

假如一个系统由两个粒子组成,那么在每个时刻t这个系统则必须由12个变量来描述了。但同样,我们可以用12维空间中的一个点来代替它。对于一些宏观物体,比如一只猫,它所包含的粒子可就太多了,假设有n个吧,不过这不是一个本质问题,我们仍然可以用一个6n维相空间中的质点来描述它。这样一来,一只猫在任意一段时期内的活动其实都可以等价为6n空间中一个点的运动(假定组成猫的粒子数目不变)。我们这样做并不是吃饱了饭太闲的缘故,而是因为在数学上,描述一个点的运动,哪怕是6n维空间中的一个点,也要比描述普通空间中的一只猫来得方便。在经典物理中,对于这样一个代表了整个系统的相空间中的点,我们可以用所谓的哈密顿方程去描述,并得出许多有益的结论。

——部分选自曹天元《量子物理史话》

喜欢走进修仙请大家收藏:(m.daoisms.cc)走进修仙盗墓笔记小说更新速度全网最快。

上一章 目 录 下一章 存书签
站内强推 风水异事 直播考古:我画的漫画成真了 穿书后拿了伪女主剧本 凤月无边 重生之玩转魔兽世界 星纪帝国之枭宠狂妻 [综]朝花夕拾 暴君刘璋 美人妆 用手机教古人搞基建 最强男神(网游) 末世之我老婆会生崽 七十年代餐饮大王 超级龙宠 又见1982 异世领主成长记 学姐快住口! 千亿婚宠,老公,极致宠! 九天神凰 我在聊斋里捡毛绒绒 
经典收藏
最近更新 女神的修仙高手 九鼎神皇 青莲之巅 穿入诸天 天机传奇 无限制神话 阴阳毒神 剑卒过河 归藏剑仙 我在镇妖司里吃妖怪 武侠之数据风暴 玄门高手在都市 无限之开荒者 无上邪尊 大道之后 主神逍遥 最强反套路系统 长生庄主 洪荒之人族天帝 聊斋之长生 
走进修仙 吾道长不孤 - 走进修仙txt下载 - 走进修仙最新章节 - 走进修仙全文阅读 - 好看的武侠仙侠小说